## Exercise 13

Solve the differential equation.

$$
3 \frac{d^{2} V}{d t^{2}}+4 \frac{d V}{d t}+3 V=0
$$

## Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $V=e^{r t}$.

$$
V=e^{r t} \quad \rightarrow \quad \frac{d V}{d t}=r e^{r t} \quad \rightarrow \quad \frac{d^{2} V}{d t^{2}}=r^{2} e^{r t}
$$

Plug these formulas into the ODE.

$$
3\left(r^{2} e^{r t}\right)+4\left(r e^{r t}\right)+3\left(e^{r t}\right)=0
$$

Divide both sides by $e^{r t}$.

$$
3 r^{2}+4 r+3=0
$$

Solve for $r$.

$$
\begin{gathered}
r=\frac{-4 \pm \sqrt{16-4(3)(3)}}{2(3)}=\frac{-4 \pm \sqrt{-20}}{6}=-\frac{2}{3} \pm i \frac{\sqrt{5}}{3} \\
r=\left\{-\frac{2}{3}-i \frac{\sqrt{5}}{3},-\frac{2}{3}+i \frac{\sqrt{5}}{3}\right\}
\end{gathered}
$$

Two solutions to the ODE are $e^{(-2 / 3-i \sqrt{5} / 3) t}$ and $e^{(-2 / 3+i \sqrt{5} / 3) t}$. By the principle of superposition, then,

$$
\begin{aligned}
V(t) & =C_{1} e^{(-2 / 3-i \sqrt{5} / 3) t}+C_{2} e^{(-2 / 3+i \sqrt{5} / 3) t} \\
& =C_{1} e^{-2 t / 3} e^{-i t \sqrt{5} / 3}+C_{2} e^{-2 t / 3} e^{i t \sqrt{5} / 3} \\
& =e^{-2 t / 3}\left(C_{1} e^{-i t \sqrt{5} / 3}+C_{2} e^{i t \sqrt{5} / 3}\right) \\
& =e^{-2 t / 3}\left[C_{1}\left(\cos \frac{\sqrt{5} t}{3}-i \sin \frac{\sqrt{5} t}{3}\right)+C_{2}\left(\cos \frac{\sqrt{5} t}{3}+i \sin \frac{\sqrt{5} t}{3}\right)\right] \\
& =e^{-2 t / 3}\left[\left(C_{1}+C_{2}\right) \cos \frac{\sqrt{5} t}{3}+\left(-i C_{1}+i C_{2}\right) \sin \frac{\sqrt{5} t}{3}\right] \\
& =e^{-2 t / 3}\left(C_{3} \cos \frac{\sqrt{5} t}{3}+C_{4} \sin \frac{\sqrt{5} t}{3}\right)
\end{aligned}
$$

where $C_{1}, C_{2}, C_{3}$, and $C_{4}$ are arbitrary constants.

